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A. INTRODUCTION

Antoni Zygmund was born in Warsaw, Poland, on December 26, 1900.
He died on May 30, 1992, in Chicago. Thus ended a very successful life,
rich in mathematical discoveries, wonderful students, and exemplary books.

The largest part of Zygmund's work was devoted to one subject: the
theory of trigonometric series. This beautiful theory became possible after
the discovery of the Lebesgue integral, and it achieved its highest ambition
with Carleson's theorem in 1966. Zygmund was one of its builders, together
with Hardy, Littlewood, Kolmogorov, Lusin, and others. At present, this
theory is part of harmonic analysis, together with topics such as Banach
algebras and harmonic analysis on groups.

Is Fourier analysis part of approximation theory? I think it is better
considered as an allied theory that often appears as a tool, similar in this
respect to orthogonal polynomials and to wavelets. The readers of this
journal may ask, what part of Zygmund's work is most relevant to
approximation theory? If we put aside Zygmund's theory of singular
integrals, then I believe the answer is simple. It is those of his achievements
which are most important to all general analysts.

I begin my review with these simple, important results. Then I discuss,
as examples, a few of his many special investigations. I end with a
description of my personal encounter with Zygmund's work.

B. ZYGMUND'S RESULTS WHICH

EVERY ApPROXIMATION THEORIST SHOULD KNOW

B.t. Bernstein's inequality for trigonometric polynomials Tn of degree at
most n on the circle If is II T~ II.~ ~ n II Tn II ~. Since approximation theory is
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most often used in L p spaces, one constantly applies Zygmund's inequality
[3],

l~p<oo. ( 1)

Later extensions of this include the pointwise relation T~(x) -< nTAx) on T
(with the quasi-inequality -< of Hardy and Littlewood), so that (l) is true
for any rearrangement-invariant Banach function space in place of L p , and
the fact due to Arestov that (l) is valid also for the non-Banach spaces L p

with 0 < p < 1.

8.2. Function spaces. Zygmund was one of the first to study the
following spaces:

(1) The space L log L, which consists of all functions I on T that
satisfy

I/IL'ogL~fLI/(x)llog+ I/(x)1 dx< +00.

He proved [2] that for f E L log L, the conjugate function 1(x) (which
exists a.e. if I ELI but is not necessarily integrable) belongs to the space L 1

and satisfies 111111 ~ C III Llog L' where C is a constant.

(2) The space V" 0 < iI. < 1, which consists of all functions of
bounded variation on T that also belong to Lip iI.. Zygmund [1] proved
that the Fourier series of functions I E V~ are absolutely convergent.

These spaces continue to appear in modern approximation theory. For
example, let us compare the error of approximation Pn (f) of I by rational
functions of degree at most n with the polynomial approximation error
En (f). For typical functions I of Sobolev or Lipschitz spaces, they are of
the same order. This is not true for the spaces given above. For example,
Pn(f)~C(1ogn/n) if IE V~, O<(t< I (Petrushev, Pekarskii), while only
En(f)~Cn~ is true. Similarly, one has Pn(f)~C(l/n)II'ILlogL if
I' E L log L (Pekarskii), but only En (f) ~ C(l/n) III'II L> holds for polyno­
mial approximation.

8.3. Smooth lunctions. Since 1912 it has been known that the error of
the trigonometric polynomial approximation EnCf) =def minT" III - Tnll ex

on the circle T satisfies E" (f) = O(n - ~), 0 < (I. < 1 if and only if I E Lip iI..

For iI. = 1 this is not true. Although I ELip 1 implies that En (f) = O(n -I),
the converse no longer holds. This phenomenon was explained by
Zygmund [5] in 1945. The relation E,,(f)=O(n- l

) is equivalent not
to Ah f(x) =defI(x + h) - f(x) = O(h), but to the weaker assumption
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L1~f(x) =der fix + 2h) - 2f(x + h) + f(x) = O(h). The situation repeats
itself for En (f) = O(n - r), with integer r > O. This has led to two contrasting
definitions of the Lipschitz spaces Lip Q:, Q: > O. We define Wk (f, II) = der

max!tl <;h 1.17 f(x)l, k = 1, 2, ... ; this is the kth modulus of smoothness of f,
If Q: = r + /3,0 < /3 ~ I, and r=O, I, ..., then fE Lip Q: means that prj E Lip /3
or, equivalently, that W! (pr l, h) = 0(hI3 ). On the other hand, with
r* = [Q:] + I, f E Lip* Q: means that wr.(f, h) = O(h').

The two Lipschitz spaces are identical if Q: is not an integer. For
Q:=1,2, ...,fELip*Q:<o>En (f)=0(n-'). This space is separable, while
Lip Q:, Q: = I, 2, '" is not. Nevertheless, the spaces Lip (X and Lip* Q: are
similar forQ: = 1,2, .... Their unit balls have the same entropy in the
uniform metric.

BA. Interpolation of operators. The Riesz-Thorin interpolation theorem
and operators of strong or weak type (p, q), 1~p~q~ OC;, are well
known. In [7], Zygmund reconstructs and generalizes the proof of a
theorem of Marcinkiewicz: if a linear operator U is of weak types (Pj, q)
with constants M j , j = I, 2, then for each 0 < e< 1, U is of strong
type (p, q), Ijp = ejp, + (1 - e)jp2' Ijq = ejq, + (1- e)jq2' with norm
~ (qe( I - e» max(M!, M 2 ) (today, one usually formulates this theorem
in terms of the Lp,r-spaces), This paper of Zygmund led to a flowering of
the theory of interpolation of operators in the sixties and seventies (another
source was the K-functionals and J-functionals of Peetre).

A simple variation of this theorem is that if U belongs to the strong types
(l, I) and (ex), ,OC;), then it maps any rearrangement invariant Banach
function space (that is, "any space between L I and L.x ") onto itself with
norm less than or equal to Cmax(M" M 2 ). For sequences instead of
functions, this is a theorem of Hardy, Littlewood, and Polya already
obtained in 1929 with a similar proof. For functions, it is a folk theorem,
used in different forms by many authors.

C. A SELECTION OF MORE SPECIAL ACHIEVEMENTS BY ZYGMUND

All of this is quite important, but does not necessarily represent the
deepest, or the most difficult of Zygmund's achievements. Nevertheless,
Zygmund was a powerful technician. The subjects he liked most were sum­
mability of trigonometric series, conjugate Fourier series and functions,
trigonometric and power series with random coefficients such as L ± c; eiJ"

lacunary series, differentiability properties of functions, and, as the crown­
ing achievement, his and Calderon's theory of singular integrals.
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c.l. Differentiation of functions. In [4], Zygmund addresses the
following question. How can one define the kth derivative, k> 1, of a
function of one variable f(x) at x o, if f is given around xo, and if one does
not know the values or even the existence of lower derivatives? The kth
Riemann derivative Dkf(xo) is the limit (if it exists) limh~O+ h- k Lf~(f, x o)
where Lf~ is the symmetric difference at Xo; the Peano derivative Dkf(xo)
is the number ak in the expansion (if it exists) f(xo + h) = ao+ a 1 h + ... +
(ak/k!)hk+o(h k). Clearly, Dkf(xo) exists whenever the latter holds. The
converse is by no means obvious, but is true almost everywhere.

C.2. Sets of uniqueness. A measurable set A c 1r is a set of uniqueness if
each trigonometric series that converges to zero outside A is identically
zero. Each set of uniqueness has measure zero. The problem of charac­
terizing all sets of uniqueness seems to be hopeless; one can only study
examples. After preliminary work by Salem and Piatetski-Shapiro the
following astonishing theorem has finally been proved [6]. We construct
perfect sets in the following standard way. Let 0 < e< 1 be fixed. From
[0, 2n] we omit a central closed interval of length e· 2n, in each of the
remaining intervals 11 ,12 we again omit the central interval of length
e1111=e 112 1, and so on. The remaining perfect set of measure zero is a
unicity set if and only if e= 1/~, where ~ is a Pisot number. This means
that ~ (~> 1) is a real root of a monic polynomial P with integral
coefficients, while all other roots of P are complex numbers less than one
in absolute value.

C.3. The Littlewood-Paley theory, as created before the war, had as its
first objective the proof of

a.e. (2)

for the Fourier sums sn(x) of functions fE L p , 1< p < ex; (the case p = 2 is
easy). With the participation of Zygmund and Marcinkiewicz, and with the
help of complex analysis, a powerful technique was developed. Let
u(r cos t, r sin t) =def u(x, y) be the Poisson integral of f The theory uses
the Littlewood-Paley function

t E T,

with IVul 2 = (oujoX)2 + (OU/oy)2, and the Lusin function

O<c5<l,



GUEST EDITORIAL 5

where Q,>;(t) is the angular region consisting of the disk Izl ~ t5 and the area
between it and its two tangents, emanating from e il

• One has Cl Ilfllp~
Ilgfllp~C2l1fllp and C[llfllp~llsfllp~C21Ifllp for fEL p, l<p<co.
Applications are to the existence of non-tangential limits of analytic
functions, to multipliers, and to estimation of the function

where (1 n is the nth Fourier mean of f The latter leads to a proof of (2).
It is true that (2) became obsolete in 1967 when Hunt proved that
convergence takes place for the entire sequence sn(x). This, however, did
not destroy the importance of the theory, especially when it was shown
(see, e.g., Stein [10]) that the theory applies to functions of n variables, if
one replaces complex analysis by the theory of singular integrals or by
harmonic functions of n variables.

CA. Singular integrals of Zygmund and Calderon [8]. This deep and
important theory stands somewhat apart from the rest of Zygmund's work.
Achieved late in his life, it is an n-dimensional real variable theory, with
new techniques. With its applications to differential equations, it influences
even applied mathematics (cf. [9]).

For n = 1, the Hilbert transform of a function f E L[ (IR) is given by the
formula

- . J f(y)f(x)= hm --dy.-0 Ix-YI:;'. x- Y

(this is closely related to the conjugate of f which is also often denoted by
f). For points X= (Xl' ..., x n ) of W we put Ixl =def(Z>7)1/2 and define the
unit sphere 1: by Ixl = 1. A singular integral of fELt(W) is given by a
kernel K(x) = Q(x') Ixl-n, x' =def x/lxl E 1:, where IE Q(x') dx' = 0, and the
formula

](x) = lim f f(y) K(x, y) dy.
E. - 00 Ix - yl ~ l;

(3 )

The main theorem is that for smooth Q and aU f E L p (lR n
), 1 < P < 00, ](x)

exists a.e. and is a bounded map of Lp into itself. Generalizations of (3)
include kernels K(x, X - y). This is the bare minimum of the theory that we
can give here. Applications include an extension of the Littlewood-Paley
theory to n-dimensions, to theorems about the differentiability of functions
(Zygmund with Stein), and to theorems about the existence and smooth­
ness properties of solutions of partial differential equations (some first
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important papers were by Zygmund and Calderon). The reader may
consult the book of Stein [10] and, for newer developments, the one by
Christ [11].

D. ZYGMUND'S BOOKS

Zygmund wrote two books on trigonometric series, each of them a
perfect exposition of this theory at the time of its publication. The first
book appeared in 1935 as Volume 5 of Monografje Matematiczne, Warsaw,
332 pages (the first volume of this series was Banach's "Theorie des
Operations Lineaires"). His second book was the 1959 publication by
Cambridge University Press in 2 volumes, 737 total pages. J. P. Kahane
calls this book "The Bible" of a harmonic analyst. (With Saks, Zygmund
also published in 1938 a successful book on the theory of analytic
functions. )

The story of my very personal encounter with Zygmund's first book,
which was translated into Russian in 1939, begins in early May 1942.
During the height of World War II, I ended up in Kislovodsk in the
Caucasus, evacuated from Leningrad with the Pedagogical Institute
Herzen. This was after several years of economic depression in Leningrad
and after the horrible winter of 1941-1942 during the German blockade.
I was determined to start my mathematical life anew. In the nearby city of
Pyatigorsk, in the downtown library of a college, next to a proud six-story
building, I found and borrowed Zygmund's book. In a few months the
Germans arrived. The six-story building burned down (it turned out to be
the headquarters of the KGB, the secret police of the region), and with
it went the humble library. I thus could not return Zygmund's book.
I continued to study it in Poland, where I moved with my wife and new­
born son in 1943. We had to migrate as far as possible westward. Somehow
I managed to write a few mathematical papers, one of them on Fourier
series. I sent them to Professor K. Knopp for the Mathematische Zeitschrift.
As a result, in 1944 we ended up in Tiibingen, in the western part of
Germany, where I worked with Professors Kamke and Knopp until the
beginning of 1949. I was still clinging to Zygmund's book. My so-called
"Lorentz spaces" were an outcome of this study. In addition, my first Ph.D.
student, W. B. Jurkat, wrote his dissertation on Fourier series in 1949. This
all proves, I hope, that Zygmund's book was, at the time, an excellent
introduction to classical analysis.
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